Characterization of a Prototype Wideband Airport Pseudolite, Multipath Limiting Antenna (WBAPL MLA) for the Local Area Augmentation System (LAAS)

Jeff Dickman
Ohio University, Avionics Engineering Center

FAA/NASA Joint University Program
Quarterly Review
Atlantic City, New Jersey
January 9 & 10, 2003

Background

- The Local Area Augmentation System (LAAS) is an augmentation to GPS which has been designed to support navigation within the airport area (approximately a 20-30 mile radius).
- Additional Ground Based Ranging Sources (such as pseudo satellites a.k.a. pseudolites) are Used to Augment the GPS Constellation Component of the LAAS in Order to Improve Availability.
- This Presentation will Focus on a New Antenna to be Used as a Transmission Antenna for Wideband Airport Pseudolite (WBAPL) Signals.

WBAPL MLA

Avionics Engineering Center

LAAS Overview with WBAPL

- Wideband-Only Signal is Used for Robust Performance
- APL(s) Modular to LAAS Design for CAT II/III
- Pulsing of APL Used to Maximize Interoperability with GPS

- LAAS Background
- WBAPL Introduction
- Description of Antenna Pattern Requirements for WBAPL Transmission
- Full Antenna Radiation Patterns
- Measured Performance Data Collected in the Field
- Comparison of Other Existing Technologies to Show Additional Performance Attained with a WBAPL MLA.

- LAAS Background
- WBAPL Introduction
- Description of Antenna Pattern Requirements for WBAPL Transmission
- Full Antenna Radiation Patterns
- Measured Performance Data Collected in the Field
- Comparison of Other Existing Technologies to Show Additional Performance Attained with a WBAPL MLA.

WBAPL Introduction

- WBAPL signals have been used as an additional ground based ranging source to augment the GPS constellation in the LAAS for over 10 years.
 - » Provide Increased Availability
 - » Provide Increased LAAS Accuracy for Reduced SV Cases
- Transmission of WBAPL signals entreats the use of a customized antenna since the required performance is different from that of GPS reception.
- A larger aperture (provided by a 20-element antenna)
 was selected to provide sharp rolloff about the horizon
 and an extended coverage volume while maintaining a
 high desired to undesired (D/U) ratio.

Why MLA for WBAPL Transmission?

WBAPL MLA Photos

LAAS Ground Facility FLD8 Location

High Zenith Antenna-Multipath ~3 [m] Limiting Antenna Pipe Adapter -**Mounting Pole IN500 Pseudolite** 2.6 [m]

WBAPL MLA Shown With Respect to Airport Facilities

Avionics Engineering Center

New Ohio University Airport (UNI) Prototype LAAS Site

Note: Not Shown to Scale

Center

New WBAPL Transmission Site

- APL Transmission via the WBAPL MLA at FLD8 (HZA not used).
 - » Uses a 20-element MLA Tailored for WBAPL Transmission
- IntegriNautics IN500 Pseudolite Generator
 - » Peak Transmitted Power = +35 dBm
 - » Duty Cycle = 4.7% Modified RTCA Format with Pulse Width of 240 chips

- LAAS Background
- WBAPL Introduction
- Description of Antenna Pattern Requirements for WBAPL Transmission
- Full Antenna Radiation Patterns
- Measured Performance Data Collected in the Field
- Comparison of Other Existing Technologies to Show Additional Performance Attained with a WBAPL MLA.

WBAPL Approach Geometry

θ = Antenna Elevation Angle

Avionics Engineering

Pattern Regions Defined

Elevation Angle	Primary Objective	Secondary Considerations
-3° to 0°	LGF – Multipath Rejection	APL Range – Gain (above the horizon)
-1° to 1°	LGF – Gain	Other Multipath Rejection
1° to 5°	A/C on Final - Gain	A/C on Final – Multipath Rejection
-5° to -1°	A/C on Final - Multipath Rejection	Sufficient Gain Above the Horizon
5° to 35°	APL Airport Coverage - Gain	No Performance Reduction Elsewhere
35° to 60°	GPS/APL Airport & en route Coverage – Gain	No Performance Reduction Elsewhere
60° to 90°	Overflight Coverage – Gain	No Performance Reduction Elsewhere

LGF = LAAS Ground Facility A/C = Aircraft APL = Airport Pseudolite

- LAAS Background
- WBAPL Introduction
- Description of Antenna Pattern Requirements for WBAPL Transmission
- Full Antenna Radiation Patterns
- Measured Performance Data Collected in the Field
- Comparison of Other Existing Technologies to Show Additional Performance Attained with a WBAPL MLA.

Elevation Radiation Gain Pattern With Desired Limits

Desired to Undesired Detic

Physical Description

- Cylindrical, Co-linear, Dipole Elements Which Provides Vertical Polarization for Ground to Air Link
 - » Better Multipath Performance
 - » Better Ground to Air Coupling
- Pattern Shaping is Achieved by Carefully Controlling the Amplitude and Phase Feed Distribution.
 - » Synthesized in Software
 - » Optimized for Attainability

- LAAS Background
- WBAPL Introduction
- Description of Antenna Pattern Requirements for WBAPL Transmission
- Full Antenna Radiation Patterns
- Measured Performance Data Collected in the Field
- Comparison of Other Existing Technologies to Show Additional Performance Attained with a WBAPL MLA.

New Ohio University Airport (UNI) Prototype LAAS Site

Avionics Engineering Center

Note: Not Shown to Scale

Theoretical Dynamic Range For the WBAPL Link

WBAPL MLA

 $P_R = -125.5 \text{ dB} @ 35 \text{ nmiles}$

Dynamic Range = -86.5 + 125.5 = 39 dB

IMLA

 $P_R = -130.5 \text{ dB}$ @ 35 nmiles

Dynamic Range = -92.25 + 130.5 = 38.25 dB

Power Profile Movement Trends

Variable Offset, Fixed Advance

Variable Advance, Fixed Offset

Code Minus Carrier Analysis

 Currently Conducting a Code Minus Carrier Analysis to Characterize the WBAPL MLA Multipath Performance.

$$\rho = r + I + T + c(\delta t_u + \delta t^s) + \varepsilon_{\rho}$$

$$\phi = r - I + T + c(\delta t_u + \delta t^s) + N + \varepsilon_{\varphi}$$

$$r_{CMC} = \rho - \varphi = 2 \cdot I + N + \varepsilon_{\varphi} + \varepsilon_{\rho}$$

Where:

```
r = True range, user to satellite
                                           [m]
I = Ionospheric propagation delay
                                                    [m]
T = Tropospheric propagation delay
                                          [m]
c = WGS84 speed of light in a vacuum
                                           [m/s]
δtu = User clock bias
                                 [s]
δtsv = Satellite clock bias
                                                    [8]
N = Carrier Phase Integer Ambiguity
                                           [m]
\varepsilon = Other Error Terms
                                                    [m]
```


Multipath Exposure

 In order to Expose the Multipath, Some Error Terms Must be Removed.

$$r_{CMC} = \rho - \varphi = 2 \cdot I + N + \varepsilon_{\varphi} + \varepsilon_{\rho}$$

- The lonospheric Variation can be Removed by Subtracting a Polynomial Fit.
- The Integer Ambiguity is a Constant Bias in the Residual.
 - » It can be removed by subtracting the mean as long as there are no carrier phase cycle slips.

Multipath Isolation - Continued

 Finally, the Remaining Error Is Filtered to Highlight Multipath Using a Recursive Filter.

$$CmC_{sm}^{k} = \frac{1}{N}CmC_{raw}^{k} + \frac{N-1}{N}CmC_{sm}^{k-1}$$

Where:

N = Smoothing Constant [s]CmC = Code Minus Carrier Residual [m]k = Time Index [unitless]

raw = Raw Measurement

sm = Smoothed Measurement

Preliminary Results for SV28

Polynomial Fit Removed

- LAAS Background
- WBAPL Introduction
- Description of Antenna Pattern Requirements for WBAPL Transmission
- Full Antenna Radiation Patterns
- Measured Performance Data Collected in the Field
- Comparison of Other Existing Technologies to Show Additional Performance Attained with a WBAPL MLA.

Elevation Gain Pattern Comparison

D/U Ratio Comparison

Questions?

